THE ANCILLARY PRODUCTS OF RUBBER (Hevea brasiliensis Muell. Arg.): POTENTIAL RESOURCES TO ENHANCE SUSTAINABILITY

Authors

DOI:

https://doi.org/10.21776/ub.agrise.2022.022.3.3

Keywords:

agribusiness, bioenergy, latex serum, rubber prices, rubberwood, seeds

Abstract

Indonesia is one of the major natural rubber-producing countries. The low rubber prices severely affect rubber agribusiness as farmers and rubber companies depend on latex as the only source of income. This condition leads to an unprecedented challenge to rubber agribusiness sustainability. This systematic review aims to encourage the use of part of rubber plants as a source of revenue for rubber plantations to maintain their sustainability. Non-latex parts of the rubber plant can be utilized, including latex serum and skim waste, parts of rubber seeds, and rubberwood. The strength of the ancillary product of Hevea brasiliensis is that the raw materials are abundant, yet the weakness is that the rubber companies have no experience exploiting them. The opportunity for utilizing is widely open, as many methods have been researched; however, the main thread is how to compete with the existing products. Therefore, careful market research and feasibility studies are recommended.

References

A’ini, Y., & Jannah, W. (2016). Pengaruh penurunan harga karet mentah terhadap daya beli masyarakat di Pasar Desa Pasir Jaya. Jurnal Ilmiah Cano Ekonomos, 5(2), 125–132.

Abduh, M. Y., Jamilah, M., Istiandari, P., & Manurung, R. (2017). Bioconversion of rubber seeds to produce protein and oil-rich biomass using black soldier fly larva assisted by microbes. Journal of Entomology and Zoology Studies, 5(4), 591–597.

Abduh, M. Y., Manurung, R., & Heeres, H. J. (2016). The influence of storage time on relevant product properties of rubber seeds, rubber seed oil and rubber seed oil ethyl esters. Sustainable Chemical Processes, 4(1), 12. https://doi.org/10.1186/s40508-016-0056-7

Admojo, L., & Setyawan, B. (2018). Potensi pemanfaatan lignoselulosa dari biomasa kayu karet (Hevea brasisiliensis Muell Arg.). Warta Perkaretan, 37(1), 39–50. https://doi.org/10.22302/ppk.wp.v37i1.529

Agarry, S. E., & Owabor, C. N. (2012). Evaluation of the adsorption potential of rubber (Hevea brasiliensis) seed pericarp-activated carbon in Abattoir Wastewater Treatment and in the removal of iron (III) ions from aqueous solution. Nigerian Journal of Technology, 31(3), 346–358.

Aguihe, P. C., Kehinde, A. S., Ivan, O. C., & Eiko, M. A. (2017). Evaluation of processing methods of rubber (Hevea brasiliensis) seed meal for use as a feed ingredient for broiler chickens. Journal of Poultry Research, 14(1), 20–27.

Ahmad, J., Yusup, S., Bokhari, A., & Kamil, R. N. M. (2014). Study of fuel properties of rubber seed oil based biodiesel. Energy Conversion and Management, 78, 266–275. https://doi.org/10.1016/j.enconman.2013.10.056

Anis, D., Zaidi, a G., Khudzir, I., Iqbaldin, M. N., Osman, U. M., & Nawawi, W. I. (2014). Production of rubber seed pericarp based activated carbon using microwave-induced different chemical activating agent. International Journal of Scientific and Research Publications, 4(7), 1–8.

Annisa, N., Suprayudi, M. A., Setiawati, M., & Fauzi, I. A. (2020). Evaluation of processed rubber seed oil Hevea brasiliensis utilization as lipid source in Clarias gariepinus feed. Jurnal Akuakultur Indonesia, 19(2), 131–141. https://doi.org/10.19027/jai.19.2.131-141

Archer, B. L., & Cockbain, E. G. (1955). The proteins of Hevea brasiliensis latex: 2. Isolation of the α-globulin of fresh latex serum. Biochemical Journal, 61(3), 508–512. https://doi.org/10.1042/bj0610508

Arsad, E. (2009). Kayu karet sebagai substitusi kayu hutan alam untuk industri. Jurnal Riset Industri Hasil Hutan, 1(1), 31–37. https://doi.org/10.24111/jrihh.v1i1.871

Association of Natural Rubber Producing Countries. (2021). Daily Prices of Natural Rubber. In Rubber Market. http://www.anrpc.org/

Baral, S. S., Das, S. N., & Rath, P. (2006). Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 31(3), 216–222. https://doi.org/10.1016/j.bej.2006.08.003

Bhattacharjee, A., Bhowmik, M., Paul, C., Das Chowdhury, B., & Debnath, B. (2021). Rubber tree seed utilization for green energy, revenue generation and sustainable development– A comprehensive review. Industrial Crops and Products, 174, 114186. https://doi.org/10.1016/j.indcrop.2021.114186

Borhan, A., Abdullah, N. A., Rashidi, N. A., & Taha, M. F. (2016). Removal of Cu2+ and Zn2+ from single metal aqueous solution using rubber-seed shell based activated carbon. Procedia Engineering, 148, 694–701. https://doi.org/10.1016/j.proeng.2016.06.571

Bottier, C. (2020). Biochemical composition of Hevea brasiliensis latex: A focus on the protein, lipid, carbohydrate and mineral contents. In R. Nawrot (Ed.), Latex, Laticifers and Their Molecular Components: From Functions to Possible Applications (Issue 93, pp. 201–237). Academic Press. https://doi.org/10.1016/bs.abr.2019.11.003

Chaikul, P., Lourith, N., & Kanlayavattanakul, M. (2017). Antimelanogenesis and cellular antioxidant activities of rubber (Hevea brasiliensis) seed oil for cosmetics. Industrial Crops and Products, 108(May), 56–62. https://doi.org/10.1016/j.indcrop.2017.06.009

Chow, K. S., Mat-Isa, M. N., Bahari, A., Ghazali, A. K., Alias, H., Mohd.-Zainuddin, Z., Hoh, C. C., & Wan, K. L. (2012). Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. Journal of Experimental Botany, 63(5), 1863–1871. https://doi.org/10.1093/jxb/err363

Danwanichakul, P., Pohom, W., & Yingsampancharoen, J. (2019). L-Quebrachitol from acidic serum obtained after rubber coagulation of skim natural rubber latex. Industrial Crops and Products, 137, 157–161. https://doi.org/10.1016/j.indcrop.2019.04.072

Daruliza, K. M. A., Lam, K. L., Yang, K. L., Priscilla, J. T., Sunderasan, E., & Ong, M. T. (2011). Anti-fungal effect of Hevea brasiliensis latex C-serum on Aspergillus niger. European Review for Medical and Pharmacological Sciences, 15, 1027–1033.

Dharmakeerthi, R. S., Chandrasiri, J. A. S., & Edirimanne, V. U. (2012). Effect of rubber wood biochar on nutrition and growth of nursery plants of Hevea brasiliensis established in an Ultisol. SpringerPlus, 1(1), 84. https://doi.org/10.1186/2193-1801-1-84

Directorate General of Estate Crops of Indonesia. (2019). Tree Crop Estate Statistics of Indonesia 2018-2020: Rubber. Ministry of Agriculture.

Farma, R., Husni, H., Apriyani, I., Awitdrus, A., & Taer, E. (2021). Biomass waste-derived rubber seed shell functionalized porous carbon as an inexpensive and sustainable energy material for supercapacitors. Journal of Electronic Materials, 0123456789. https://doi.org/10.1007/s11664-021-09226-7

Fawole, F. J., Sahu, N. P., Jain, K. K., Gupta, S., Shamna, N., Phulia, V., & Prabu, D. L. (2016). Nutritional evaluation of protein isolate from rubber seed in the diet of Labeo rohita: Effects on growth performance, nutrient utilization, whole body composition and metabolic enzymes activity. Animal Feed Science and Technology, 219, 189–199. https://doi.org/10.1016/j.anifeedsci.2016.06.014

Hasan, H., Farida, & Ertiyasa, G. (2016). Konsentrasi pemberian ekstrak biji karet (Hevea brasiliensis) yang berbeda untuk anestesi terhadap kelangsungan hidup calon induk ikan bandeng (Chanos chanos Forskal) dengan metode transportasi tertutup. Jurnal Ruaya: Jurnal Penelitian Dan Kajian Ilmu Perikanan Dan Kelautan, 4(2), 55–62.

Hu, Y., Zhu, G., Zhang, J., Huang, J., Yu, X., Shang, Q., An, R., Liu, C., Hu, L., & Zhou, Y. (2021). Rubber Seed Oil-Based UV-Curable Polyurethane Acrylate Resins for Digital Light Processing (DLP) 3D Printing. Molecules, 26(18), 5455. https://doi.org/10.3390/molecules26185455

Hutapea, S., Panggabean, E. L., & Wijaya, A. (2015). Utilization of rubber seed shells and epicarp wastes as activated biochar. Chemistry and Material Research, 7(12), 9–14.

Iewkittayakorn, J., Chungsiriporn, J., & Pongyeela, P. (2017). Use of ammonium-enriched skim latex serum to compost rubber biomass wastes and its effect on planting Brassica alboglabra. Sains Malaysiana, 46(10), 1763–1769. https://doi.org/10.17576/jsm-2017-4610-13

Iewkittayakorn, J., Chungsiriporn, J., & Rakmak, N. (2018). Utilization of waste from concentrated rubber latex industry for composting with addition of natural activators. Songklanakarin Journal of Science and Technology, 40(1), 114–120. https://doi.org/10.14456/sjst-psu.2018.30

Ismail, M. S., Rahman, A. N., Farhatin, A. H., Khasanah, M., & Nugraheni, D. (2021). Rubble BricQ (briket limbah daun karet) sebagai inovasi bahan bakar alternatif masa kini. Jurnal Al-Azhar Indonesia Seri Sains Dan Teknologi, 6(1), 57–60.

Jacob, J. L., D’Auzac, J., & Prévôt, J. C. (1993). The composition of natural latex from Hevea brasiliensis. Clinical Reviews in Allergy, 11(3), 325–337.

Jariyaboon, R., O-Thong, S., & Kongjan, P. (2015). Bio-hydrogen and bio-methane potentials of skim latex serum in batch thermophilic two-stage anaerobic digestion. Bioresource Technology, 198, 198–206. https://doi.org/10.1016/j.biortech.2015.09.006

Kamalakar, K., Rajak, A. K., Prasad, R. B. N., & Karuna, M. S. L. (2013). Rubber seed oil-based biolubricant base stocks: A potential source for hydraulic oils. Industrial Crops and Products, 51, 249–257. https://doi.org/10.1016/j.indcrop.2013.08.058

Kan, R., Kaosol, T., & Tekasakul, P. (2013). Characterization and elemental composition of lignite and rubber wood sawdust pellets. KKU Engineering Journal, 40, 131–138. https://doi.org/10.14456/kkuenj.2015.1

Kerche-Silva, L. E., Cavalcante, D. G. S. M., Danna, C. S., Gomes, A. S., Carrara, I. M., Cecchini, A. L., Yoshihara, E., & Job, A. E. (2017). Free-radical scavenging properties and cytotoxic activity evaluation of latex C-serum from Hevea brasiliensis RRIM 600. Free Radicals and Antioxidants, 7(1), 107–114. https://doi.org/10.5530/fra.2017.1.16

Komilus, C. F., Mokhtar, N. F., Rosli, N. A., & Oluodo, L. A. (2021). Efficacy of detoxified rubber seed meal (Hevea brasiliensis) on growth performance, meat quality and carcass of Japanese Quail (Coturnix japonica). Bioscience Research, 18(SI-2), 272–283.

Koné, G. A., Good, M., & Kouba, M. (2020). Performance of guinea fowl fed Hevea seed meal or cashew nut meal as a partial substitute for soya bean meal. Animal, 14(1), 206–214. https://doi.org/10.1017/S175173111900185X

Kongjan, P., Jariyaboon, R., & O-Thong, S. (2014). Anaerobic digestion of skim latex serum (SLS) for hydrogen and methane production using a two-stage process in a series of up-flow anaerobic sludge blanket (UASB) reactor. International Journal of Hydrogen Energy, 39(33), 19343–19348. https://doi.org/10.1016/j.ijhydene.2014.06.057

Konno, K. (2011). Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry, 72(13), 1510–1530. https://doi.org/10.1016/j.phytochem.2011.02.016

Kumar, B. G. P., Miranda, L. R., & Velan, M. (2005). Adsorption of Bismark Brown dye on activated carbons prepared from rubberwood sawdust (Hevea brasiliensis) using different activation methods. Journal of Hazardous Materials, 126(1–3), 63–70. https://doi.org/10.1016/j.jhazmat.2005.05.043

Kumlanghan, A., Kanatharana, P., Asawatreratanakul, P., Mattiasson, B., & Thavarungkul, P. (2008). Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry. Enzyme and Microbial Technology, 42(6), 483–491. https://doi.org/10.1016/j.enzmictec.2008.01.012

Lee, S. W., & Wendy, W. (2017). Malaysian rubber (Hevea brasiliensis) seed as alternative protein source for red hybrid tilapia, Oreochromis sp., farming. AACL Bioflux, 10(1), 32–37.

Lee, Y. K., Lay, L. K., Mahsufi, M. S., Guan, T. S., Sunderasan, E., & Thong, O. M. (2012). Anti-proliferation effect of Hevea brasiliensis latex B-serum on human breast epithelial cells. Pakistan Journal of Pharmaceutical Sciences, 25(3), 645–650.

Lewinsohn, T. M. (1991). The geographical distribution of plant latex. Chemoecology, 2(1), 64–68. https://doi.org/10.1007/BF01240668

Liengprayoon, S., Vaysse, L., Jantarasunthorn, S., Wadeesirisak, K., Chaiyut, J., Srisomboon, S., Musigamart, N., Rattanaporn, K., Char, C., Bonfils, F., & Bottier, C. (2021). Distribution of the non-isoprene components in the four Hevea brasiliensis latex centrifugation fractions. Journal of Rubber Research, 0123456789. https://doi.org/10.1007/s42464-021-00133-4

Liengprayoon, S., Vaysse, L., Jantarasunthorn, S., Wadeesirisak, K., Chaiyut, J., Srisomboon, S., Musigamart, N., Roytrakul, S., Bonfils, F., Char, C., & Bottier, C. (2017). Fractionation of Hevea brasiliensis latex by centrifugation: (i) a comprehensive description of the biochemical composition of the 4 centrifugation fractions. Proceeding of International Rubber Conference, Jakarta 18-20 October 2017, 645–660.

Maghfirah, T., Nanda, D., Rahmadani, A., Prajumarse, A., Azwan, S., & Tikollah, M. R. (2021). Program pembuatan briket melalui pemanfaatan limbah daun karet untuk mengukur pemahaman, kemampuan, dan inisiatif istri petani karet di Desa Balleanging, Bulukumba. Pengabdi: Jurnal Hasil Pengabdian Masyarakat, 2(1), 48–54.

Mahat, M. S., & MacRae, I. C. (1992). Rhizopus oligosporus grown on natural rubber waste serum for production of single cell protein: a preliminary study. World Journal of Microbiology & Biotechnology, 8(1), 63–64. https://doi.org/10.1007/BF01200687

Malaysian Rubber Council. (2021). World Rubber Production, Consumption and Trade. https://www.myrubbercouncil.com/industry/world_production.php

Mgbemena, C. O., Ibekwe, N. O., Sukumar, R., & Menon, A. R. R. (2013). Characterization of kaolin intercalates of oleochemicals derived from rubber seed (Hevea brasiliensis) and tea seed (Camelia sinensis) oils. Journal of King Saud University - Science, 25(2), 149–155. https://doi.org/10.1016/j.jksus.2012.11.004

Nadarajah, R. Y., Mohammad, R., & Mohamad, M. (2018). Rubber seed shells (Hevea brasiliensis): an adsorbent used for the removal of Rhodamine B dye. ARPN Journal of Engineering and Applied Sciences, 13(24), 9311–9317.

Nadia, H., Zulkefli, S., Zulkifli, N. A., & Muhamad, N. (2021). Effect of different storage temperaures on rheological properties of bread dough and organoleptic of bread incorporated with rubber seed (Hevea brasiliensis) flour. Bioscience Research, 18(SI-2), 176–185.

Nancy, C., Agustina, D. S., & Syarifa, L. F. (2013). Potensi kayu hasil peremajaan karet rakyat untuk memasok industri kayu karet: studi kasus di Provinsi Sumatera Selatan. Jurnal Penelitian Karet, 31(1), 68–78. https://doi.org/10.22302/jpk.v31i1.134

Nazhirah, M., & Faridah, Y. (2013). Screening and separation of idustrially useful hydrolases from the wasteful skim latex serum of Hevea Brasiliensis. In R. Pogaku, B. Awang, & C. Christoper (Eds.), Developments in Sustainable Chemical and Bioprocess Technology (pp. 285–294). Springer US. https://doi.org/10.1007/978-1-4614-6208-8_34

Nguyen, H. K. D., & Nguyen, D. T. (2017). Preparation of meso-structured silica–calcium mixed oxide (MSCMO) catalyst for converting Vietnamese rubber seed oil to biodiesel. Journal of Porous Materials, 24(2), 443–454. https://doi.org/10.1007/s10934-016-0279-8

Nian-Yian, L., Peng, W. L., Mohd-Setapar, S. H., Idham, Z., Yunus, M. A. C., & Muhamad, I. I. (2014). Application of rubber (Hevea brasiliensis) seeds oil extracted using supercritical carbon dioxide in cosmetics. Jurnal Teknologi (Sciences and Engineering), 69(4), 55–59. https://doi.org/10.11113/jt.v69.3174

Nurhayati, C. (2018). Pengaruh temperatur karbonisasi, komposisi campuran arang kayu karet dan lumpur batubara terhadap kualitas biobriket. Prosiding Seminar Nasional I Hasil Litbangyasa Industri, 48–56.

Obunwo, C. C., Osagie, O. F., & Jack, A. D. (2020). Evaluation of bioplastics production potentials of rubber seed oil and cocoyam starch. Chemistry Research Journal, 5(2), 108–114.

Oladipo, B., & Betiku, E. (2020). Optimization and kinetic studies on conversion of rubber seed (Hevea brasiliensis) oil to methyl esters over a green biowaste catalyst. Journal of Environmental Management, 268, 110705. https://doi.org/10.1016/j.jenvman.2020.110705

Oluodo, L. A., Huda, N., & Komilus, C. F. (2018). Potential utilization of rubber seed meal as feed and food. International Journal of Engineering & Technology, 4(43), 66–71.

Pagketanang, T., Artnaseaw, A., Wongwicha, P., & Thabuot, M. (2015). Microporous activated carbon from KOH-activation of rubber seed-shells for application in capacitor electrode. Energy Procedia, 79, 651–656. https://doi.org/10.1016/j.egypro.2015.11.550

Pagketanang, T., Wongwicha, P., & Thabuot, M. (2015). Characteristics of activated carbon produced from rubber seed shell by using different methods of chemical activation with KOH. Applied Mechanics and Materials, 781, 659–662. https://doi.org/10.4028/www.scientific.net/AMM.781.659

Panichikkal, A. F., Prakasan, P., Kizhakkepowathial Nair, U., & Kulangara Valappil, M. (2018). Optimization of parameters for the production of biodiesel from rubber seed oil using onsite lipase by response surface methodology. 3 Biotech, 8(11), 1–14. https://doi.org/10.1007/s13205-018-1477-7

Parra-Serrano, L. J., Piva, M. E. M., Cerchiari, A. M. F., Lima, I. L. de, & Garcia, J. N. (2018). Use of Hevea brasiliensis rubberwood for glulam beam production. Floresta e Ambiente, 25(2). https://doi.org/10.1590/2179-8087.038616

Priya, S. V. T., & Helen, D. (2020). Adsorption of methylene blue dye using activated carbon from the rubber seed shell. Purakala, 31(7), 123–133.

Priyadarshan, P. M. (2011). Biology of Hevea Rubber. CAB International. https://doi.org/10.1007/978-3-319-54506-6

Ramos, M. V., Demarco, D., da Costa Souza, I. C., & de Freitas, C. D. T. (2019). Laticifers, latex, and their role in plant defense. Trends in Plant Science, 24(6), 553–567. https://doi.org/10.1016/j.tplants.2019.03.006

Razak, S. B. A., Aziz, A. A., Ali, N. A., Ali, M. F., & Visser, F. (2016). The sustainable integration of meliponiculture as an additional income stream for rubber smallholders in Malaysia. CRI & IRRDB International Rubber Conference, Siem Reap, Cambodia, 21 – 22 November 2016., 143–156.

Reshad, A. S., Tiwari, P., & Goud, V. V. (2018). Thermo-chemical conversion of waste rubber seed shell to produce fuel and value-added chemicals. Journal of the Energy Institute, 91(6), 940–950. https://doi.org/10.1016/j.joei.2017.09.002

Sari, E. L., Faizal, M., & Sari, T. I. (2020). The application of rubber seed as activated carbon for removal methylene blue by using microwave heating. Sriwijaya Journal of Environment, 5(1), 46–52. https://doi.org/10.22135/sje.2020.5.1.46-52

Sarsby, A. (2012). A Useful Guide to SWOT Analysis. Pansophix Ltd.

Shuib, N. H., Ismail, A. I., Adinan, A., & Abd Hadi, S. M. H. S. (2018). Study on biochemical properties of Hevea brasiliensis seeds stored at three different temperatures. Research Journal of Seed Science, 11(1), 1–11. https://doi.org/10.3923/rjss.2018.1.11

Simanjuntak, E., Prasetyo, & Hartal. (2018). The effect of local organic fertilizer from rubber processing waste on the yield of rubber plants. Akta Agrosia, 21(1), 25–28.

Su, C.-W., Liu, L., Tao, R., & Lobonţ, O.-R. (2019). Do natural rubber price bubbles occur? Agricultural Economics - Czech, 65(2), 67–73. https://doi.org/10.17221/151/2018-AGRICECON

Sugebo, B., Demrew, Z., Feleke, S., & Biazen, M. (2021). Evaluation and characterization of rubber seed oil for biodiesel production. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-021-01900-4

Syarifa, L. F., Agustina, D. S., Nancy, C., & Supriadi, M. (2016). Dampak rendahnya harga karet terhadap kondisi sosial ekonomi petani karet di Sumatera Selatan. Jurnal Penelitian Karet, 34(1), 119. https://doi.org/10.22302/jpk.v0i0.218

Taer, E., Deraman, M., Talib, I. A., Umar, A. A., Oyama, M., & Yunus, R. M. (2010). Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation. Current Applied Physics, 10(4), 1071–1075. https://doi.org/10.1016/j.cap.2009.12.044

Tahir, H., & Misran, M. (2019). Natural rubber latex (NRL) waste protein purified at various pH condition and metal extraction studies. Journal of Physics: Conference Series, 1349(1), 012062. https://doi.org/10.1088/1742-6596/1349/1/012062

Taysum, D. H. (1956). Bacterial culture media from waste Hevea latex sera. Journal of Applied Bacteriology, 19(1), 60–61. https://doi.org/10.1111/j.1365-2672.1956.tb00045.x

Towaha, J., & Daras, U. (2013). Peluang pemanfaatan kayu karet (Hevea brasiliensis) sebagai kayu industri. Warta Penelitian Dan Pengembangan Tanaman Industri, 19(2), 26–31.

Udo, M. D., Ekpo, U., & Ahamefule, F. O. (2018). Effects of processing on the nutrient composition of rubber seed meal. Journal of the Saudi Society of Agricultural Sciences, 17(3), 297–301. https://doi.org/10.1016/j.jssas.2016.06.001

Uttraporn, T., Sucharitaku, S., Theeraraj, G., Yuwaree, C., Navanugraha, C., & Hutacharoen, R. (2012). Waste Water Minimization: Utilization of Rubber Latex Residue and Swine Dung as Fertilizer for Para Rubber Seedling Growth. Environment and Natural Resources Journal, 10(1), 53–67.

Vachlepi, A. (2015). Produksi medium density fibreboard (MDF) dari kayu karet di Sumatera Selatan: potensi, mutu dan proses pengolahannya. Warta Perkaretan, 34(2), 177. https://doi.org/10.22302/ppk.wp.v34i2.259

Vachlepi, A., & Ardika, R. (2019). Produksi asap cair dari kayu karet dengan berbagai waktu pirolisis dan aplikasinya sebagai koagulan lateks. Jurnal Industri Hasil Perkebunan, 14(1), 50–61.

Wardani, G. A., Ristia, M., & Dewi, R. (2021). Modification of rubber seeds (Hevea brasiliensis) as adsorbent to improve the quality of used fried cooking oil. AIP Conference Proceeding, 2349, 020024. https://doi.org/10.1063/5.0051812

Widyarani, Sari, Y. W., Ratnaningsih, E., Sanders, J. P. M., & Bruins, M. E. (2016). Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins. Applied Microbiology and Biotechnology, 100(18), 7909–7920. https://doi.org/10.1007/s00253-016-7441-8

Wongsiri, S., Chanchao, C., Deowanish, S., Aemprapa, S., Chaiyawong, T., Petersen, S., & Leepitakrat, S. (2000). Honey bee diversity and beekeeping in Thailand. Bee World, 81(1), 20–29. https://doi.org/10.1080/0005772X.2000.11099464

Wychherley, P. R. (1992). The genus Hevea: botanical aspects. In M. R. Sethuraj & N. M. Mathew (Eds.), Natural Rubber: Biology, Cultivation and technology (pp. 50–115). Elsevier Science Publisher B.V.

Yan, K. Z., Zaini, M. A. A., Arsad, A., & Nasri, N. S. (2019). Rubber seed shell based activated carbon by physical activation for phenol removal. Chemical Engineering Transactions, 72, 151–156. https://doi.org/10.3303/CET1972026

Zulfikar, M. A., Alexandria, T., Wahyuningrum, D., & Handayani, N. (2020). Enhanced methylene blue removal from aqueous solution using modified rubber seed (Hevea brasiliensis). Desalination and Water Treatment, 178, 347–359. https://doi.org/10.5004/dwt.2020.24980

Downloads

Published

2022-07-31

How to Cite

Junaidi, J. (2022). THE ANCILLARY PRODUCTS OF RUBBER (Hevea brasiliensis Muell. Arg.): POTENTIAL RESOURCES TO ENHANCE SUSTAINABILITY. Agricultural Socio-Economics Journal, 22(3), 169–180. https://doi.org/10.21776/ub.agrise.2022.022.3.3

Issue

Section

Articles